Đăng Nhập      Đăng ký Quên mật khẩu
Chương Trình Toán Lớp 11
Giải Tích
Hình Học
Câu Hỏi Thường Gặp
Cài Đặt Phần Mềm Hỗ Trợ
Giới Thiệu Gói Bài Học
Hướng Dẫn Học Viên
Thông Tin Người Dùng
Họ tên: Khách viếng thăm
Nickname: guest
Trường: N/A
Quận (huyện): N/A
Tỉnh (Thành phố): N/A
Ngày tham gia: 12/22/2014 2:26:31 AM
Dịch Vụ Hỗ Trợ
Thông Tin về Cadasa
Giới thiệu Chương trình Toán lớp 11
Bạn cần đăng nhập hệ thống để học hết bài học.
Lệ phí : 5.000 Đồng
B1. Đường thẳng và mặt phẳng trong không gian
VĐ2: Tìm giao tuyến  của hai  mặt  phẳng
Số phần: 7 phần
Số lần xem tối đa: 6 lần/phần
bai giang toan lop 12
Đánh giá bài giảng:

VĐ2: TÌM GIAO TUYẾN CỦA HAI MẶT PHẲNG

I. Tóm tắt lý thuyết

Phương pháp 1:

 Muốn tìm giao tuyến của hai mặt phẳng ta có thể tìm hai điểm chung phân biệt của hai mặt phẳng . Khi  đó giao tuyến là đường  thẳng đi qua hai điểm chung đó.

II. PP GIẢI BÀI TẬP

Bài 1: Cho hình chóp SABCD.Tìm giao tuyến của hai mặt phẳng  (SAC) và (SBD).

Bài 2: Cho hình chóp SABCD có đáy ABCD là hình thang có AB//CD và AB > CD. Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC).

Bài 3: Cho điểm A không nằm trên mặt phẳng (P) chưa tam giác BCD. Lấy E, F là các điểm lần lượt nằm trên các cạnh AB, AC sao cho EF cắt BC tại I. Tìm giao tuyến của 2 mp(DBC) và (DEF)

Bài 4. (B6 – SGK) Cho bốn điểm A, B, C và D không đồng phẳng. Gọi M, N lần lượt là trung điểm của AC và BC. Trên đoạn BD lấy điểm P sao cho BP = 2PD. Tìm giao tuyến của hai mặt phẳng (MNP) và (ACD)

Bài 5. Cho tứ diện ABCD. Gọi I, K lân lượt là trung điểm của hai đoạn thẳng AD và BC.

a. Tìm giao tuyến của hai mặt phẳng (IBC) và(KAD)

b. Gọi M, N là điểm trên đoạn AB và AC. Tìm giao tuyến của hai mp (IBC) và (DMN)

III. BÀI TẬP ĐỀ NGHỊ

Bài 1. Cho tứ diện ABCD. Lấy O là một điểm thuộc miền trong của tam giác BCD và M là một điểm trên đoạn AO.

a. Tìm giao tuyến của mp(MCD) với các mp(ABC) và (ABD)

b. Gọi I, K là hai điểm lần lượt lấy trên BC và BD. Tìm giao tuyến của mp(IKM) với các mp(ACD), (ABC) và (ABD).

Hướng dẫn

a. Gọi E = BOÇCD

Nối EM cắt AB tại F

Þ Hai mp (MCD) và (ABC) có hai điểm chung là C và F.

Do đó: CF = mp(MCD)Çmp(ABC)

Hai mp(MCD) và (ABD) có hai điểm chung là D và F

Do đó: DF = mp(MCD)Çmp(ABD).

b. Gọi I’ = IOÇCD

         K’ = KOÇCD

Trong mp(AIO) gọi : H = IMÇAI’

Trong mp (AKO) gọi G = KMÇAK’

Do đó: GH = mp(IKM)Çmp(ACD)

Gọi P = GHÇAC; Q = GHÇAD

Do đó: IP = mp(IKM)Çmp(ABC)

          KQ = mp(IKM)Çmp(ABD)

Bài 2. Cho hình chóp S.ABCD với đáy ABCD là hình bình hành tâm O. Gọi M, N, P lần lượt là trung điểm của các đoạn BC, CD, SO. Tìm giao tuyến của mp(MNP) với các mp(SAB), (SAD), (SBC) và (SCD).

Hướng dẫn

Gọi : I = MN cắt AB

        G = MN cắt AD.

        E = MN ÇAC

        K = EPÇSA

IK = mp(MNP)Çmp(SAB)

Tương tự: GK = mp(MNP)Çmp(SAD)

        H = IK cắt SB

MH = mp(MNP) Çmp(SBC)

Tương tự: KG cắt SD tại L

Do đó: LN = mp(MNP) Çmp(SCD)

Ta được thiết diện của hình chóp cắt mp(MNP) là hình ngũ giác MNLKH.


Phương pháp 1: Muốn tìm giao tuyến của hai mặt phẳng ta có thể tìm hai điểm chung phân biệt của hai mặt phẳng. Khi đó giao tuyến là đường  thẳng đi qua hai điểm chung đó.


Phần kiểm tra đang được cập nhật. Mong các bạn thông cảm
Ý kiến và trao đổi về bài giảng
Mã xác nhận:
 


12