Đăng Nhập      Đăng ký Quên mật khẩu
Chương Trình Toán Lớp 11
Giải Tích
Hình Học
Câu Hỏi Thường Gặp
Cài Đặt Phần Mềm Hỗ Trợ
Giới Thiệu Gói Bài Học
Hướng Dẫn Học Viên
Thông Tin Người Dùng
Họ tên: Khách viếng thăm
Nickname: guest
Trường: N/A
Quận (huyện): N/A
Tỉnh (Thành phố): N/A
Ngày tham gia: 7/25/2014 6:18:33 PM
Dịch Vụ Hỗ Trợ
Thông Tin về Cadasa
Giới thiệu Chương trình Toán lớp 11
Bạn cần đăng nhập hệ thống để học hết bài học.
Lệ phí : 5.000 Đồng
B2. Hai đường thẳng song song
VĐ2: Tìm giao tuyến của hai mặt phẳng, xác định thiết diện
Số phần: 6 phần
Số lần xem tối đa: 6 lần/phần
bai giang toan lop 12

VĐ2: TÌM GIAO TUYẾN CỦA HAI MẶT PHẲNG. XÁC ĐỊNH THIẾT DIỆN

PP:

Bước 1: Tìm giao điểm chung của hai mặt phẳng

Bước 2: Áp dụng các định lý về giao tuyến để xác định phương giao tuyến (nghĩa là chứng minh giao tuyến song song với đường thẳng a đã có)

Từ đó suy ra giao tuyến của hai mặt phẳng là đường thẳng qua điểm chung và song song với a.

Bài 1. Cho hình chóp S.ABCD có đáy là hình thang với đáy lớn AD. Tìm giao tuyến các cặp mặt phẳng sau đây:

a. (SAC) và (SBD)

b. (SAD) và (SBC)

Bài 2. Cho hình bình hành ABCD và S là điểm không thuộc mặt phẳng của hình bình hành. Tìm giao tuyến của (SAD) và (SBC).

Bài 3. Cho hình chóp S.ABCD với ABCD là hình bình hành . Hãy xác định giao tuyến của các cặp mp (SAB) và (SCD)

Bài 4. Cho hình vuông ABCD cạnh a. Gọi S là điểm không thuộc mặt phẳng ( ABCD) sao cho SA = SB = a; SC = SD = a = x = Ö3; E, F lần lượt là trung điểm của SA và SB, M là điểm tùy ý trên BC.

a. Tìm giao tuyến của các mặt phẳng (SAB) và (SCD); (SAD) và (SBC)

b. Tìm giao tuyến của các mặt phẳng (MEF) và (ABCD). Suy ra giao điểm N của AD và mp(MEF). Chứng minh rằng tứ giác MNEF là hình thang cân.

Bài 5. Cho tứ diện ABCD.Gọi I và J tương ứng là trung điểm của BC và AC. M là một điểm tùy ý trên cạnh AD.

a. Tìm giao tuyến d của hai mp(MIJ) và mp (ABD)

b. Gọi N là giao điểm của BD với giao tuyến d và K là giao điểm của IN và JM. Tìm tập hợp điểm K di động trên đoạn AD (M không là trung điểm của AD)

c. Tìm giao tuyến của hai mặt phẳng (ABK) và (MIJ)

Bài tập đề nghị

Bài 1. Cho hình chóp S.ABCD có đáy là hình bình hành ABCD.Xác định giao tuyến của các mặt phẳng (SAD) và (SBC)

Hướng dẫn

S là điểm chung của

(SAD) và (SBC). Mà:

AD Ì(SAD)

BC Ì(SBC)

AD//BC

Nên giao tuyến của (SAD) và (SBC) là đường thẳng d qua S và song song với AD, BC.

Bài 2. Cho hình chóp S.ABCD có đáy là hình bình hành, M thuộc SA. Tìm giao tuyến của hai mặt phẳng (MCD) và (SAB)

Hướng dẫn

Ta có: AB//CD

Hai mp(SAB) và (MCD) lần lượt chứa hai đường thẳng AB//CD thì giao tuyến của chúng là đường thẳng đi qua điểm M song song với AB cắt SB tại N.

Vậy MN là giao tuyến của hai mp (SAB) và (MCD).

Bài 3. Cho hình chóp S.ABCD. Gọi A’, B’, C’ là ba điểm lấy trên các cạnh SA, SB, SC. Tìm thiết diện của hình chóp khi cắt bởi mp(A’B’C’).

Hướng dẫn

Trong (ABCD), gọi O = ACÇBD

Trong (SAC), gọi O’= A’C’ÇSO

Trong (SBD), gọi D’ = B’O’ÇSD

Có hai trường hợp:

Nếu D’ thuộc cạnh SD thì thiết diện là tứ giác A’B’C’D’

Nếu D’ không thuộc cạnh SD thì

Gọi E = CDÇC’D’

       F = ADÇA’D’

Þ Thiết diện là tứ giác A’B’EF.

Bài 4. Cho hình chóp S.ABCD có đáy là một tứ giác lồi. Gọi M và N lần lượt là trọng tâm của tam giác SAB và SAD; E là trung điểm của CB

a. Chứng minh rằng MN//BD

b. Xác định thiết diện của hình chóp S.ABCD khi cắt bởi mp(MNE)

c. Gọi H và L lần lượt là các giao điểm của mp(MNE) với các cạnh SB và SD. Chứng minh rằng LH//BD.

Hướng dẫn

a. Gọi M’ và N’ lần lượt là trung điểm của AB và AD.

MN//M’N’,      M’N’//BD

Þ MN//BD

b. Ta có:

MN Ì(MNE)

BD Ì(ABCD)

MN//BD

Þ (MNE)Ç(ABCD) = Ex thỏa mãn Ex//NM//BD

Vậy từ E ta kẻ đường thẳng song song với BD lần lượt cắt CD, AB tại F, I. Nối IM lần lượt cắt SB và SA tại H và K; nối KN cắt SD tại L. Thiết diện cần tìm là ngũ giác KLFEH

c. Ta có:

MN Ìmp(MNE)

DB Ìmp(SBD)

MN//DB

Và (MNE)Ç(SBD) = LH

Þ LH//DB.

Phần kiểm tra đang được cập nhật. Mong các bạn thông cảm
Ý kiến và trao đổi về bài giảng
Mã xác nhận:
 


Chưa có ý kiến về nội dung này.